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Abstract--The problem of thermocapillary convection in multiple immiscible liquid layers in a differen- 
tially heated shallow rectangular cavity with rigid and insulated upper and lower boundaries is considered. 
A three-layer system is considered as a model for multiple liquid layers. The middle layer is encapsulated 
on both sides by immiscible liquids, and features two interfaces which are considered to be deformable. 
The method of matched asymptotic expansions is used to determine the flow in the two distinct regions: 
the core region characterized by parallel flow; and the end-wall regions where flow turns around. 
Interfacial tension gradients induced by differential heating of the cavity drive the flow. Mechanical 
coupling across interfaces between immiscible liquids is investigated by varying the encapsulant viscosity 
and the height of encapsulant layers. 
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I N T R O D U C T I O N  

In part  I of  this series of  papers (Prakash & Koster 1994, this issue, pp. 383-396) the effects of  
buoyancy on multiple immiscible layers were studied and thermocapillary effects were excluded. 
As the genesis of  buoyancy is gravity, in the low-gravity environment aboard a spacecraft 
buoyancy-induced convection can be significantly reduced. To take advantage of  this environment, 
space processing of  GaAs  utilizing the liquid encapsulated float zone technique has been proposed 
(Barocela & Jalilevand 1987). Low gravity is, however, not a panacea for eliminating convective 
flow. A significant source of convection in low-gravity environments is thermocapillary convection, 
which results from the change of  surface tension with temperature. 

Thermocapillary convection in multiple liquid layers is an extension of  the convection problem 
in a single layer confined in a differentially heated cavity, which is either completely confined or 
features a free surface. Levich (1962) and Birikh (1966) performed the earliest analytical 
investigations of  steady thermocapiilary convection in unbounded liquid layers. 

For  shallow cavities, with height much smaller than length (aspect ratios d / l  ~ 1), direct 
numerical modeling of the flow is expensive. However, analytical progress is possible with 
asymptotic methods, as demonstrated by Cormack et al. (1974)~hereafter  referred to as C L I - - f o r  
natural convection and by Sen & Davis (1982)--hereafter referred to as S&D-- fo r  thermocapillary 
convection. Both CLI  and S&D present a theory that is valid for shallow cavities (d/ l  ~ 1) in the 
asymptotic limit of  negligible aspect ratio (A ~0) .  Both CLI and S&D show that convective flow 
in a shallow rectangular cavity can be divided into three, horizontally adjacent regions: the central, 
or "core",  region; and the two end regions where flow turns around. 

S&D utilize an analysis that is analogous to CLI ' s  theory to analyze flow in a liquid layer under 
low-gravity conditions, where convection is due to thermocapillary forces only and buoyancy 
effects are neglected. They include the complicating effects of  deformable interfaces and liquid-solid 
contact angles. 

tAuthor for correspondence. 
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Three immiscible layers are considered to be representative of a multilayer system. A one-dimen- 
sional solution, based on the analysis of Villers & Platten (1990), for a free-free layer was presented 
previously by the authors (Prakash et al. 1993). 

The multilayer problem is characterized by mechanical and thermal coupling across liquid 
interfaces. Mechanical coupling occurs via the transfer of momentum across interfaces. The 
momentum generated by interfacial tension gradients is transferred to the adjoining layers via 
continuity of the interfacial tangential velocity and the balance of shear stress across the interface. 
Together these two conditions comprise the "no-slip" condition at liquid-liquid interfaces. Prakash 
& Koster (1993) presented a one-dimensional model of this problem which included mechanical 
coupling across the interfaces. Fontaine & Sani (1992), as well as Doi & Koster (1993), presented 
a numerical simulation of the case of a free double layer with a strong surface tension and weaker 
interface tension gradient. 

Here we utilize S&D's asymptotic theory to study steady thermocapillary convection in multiple 
immiscible liquid layers, driven by two "equal" strength interface tension gradients, while excluding 
the influence of buoyancy. In this investigation, the interfaces are assumed to be pinned at the solid 
boundaries. It is the mechanical and thermal coupling that distinguishes this analysis from that of 
S&D. 

M A T H E M A T I C A L  F O R M U L A T I O N  

We consider the fluid dynamics of a system of three immiscible liquid layers in a shallow, 
rectangular, two-dimensional cavity of aspect ratio d/l <~ 1. The cavity has length l, and d is the 
height of the middle layer. The three layer heights are not necessarily equal. However, they are 
all of the same order and each layer aspect ratio is considered small. The cavity height is, therefore, 
of order 3d, which is considered to be much smaller than the cavity length. The cavity is 
differentially heated from the side, while the top and bottom boundaries are rigid and thermally 
insulated. A sketch of the geometry being considered is shown in figure 1. Horizontal differential 
heating produces a temperature gradient parallel to the two interfaces. As interfacial tension is a 
function of temperature, the imposed temperature gradient produces interfacial tension gradients. 
The interfacial tension gradients induce fluid flow, which is commonly referred to as thermocap- 
illary or Marangoni convection. 

Governing Equations 

Utilizing the stream function-vorticity formulation of the Navier-Stokes equations, the non- 
dimensional governing equations of fluid flow in each liquid layer [i = t (top), m (middle) or b 
(bottom)] are: 

i i 2 i i i i 
= - ¢ .,. q, ,.>.,. ] + A [q,,.¢ ........ - ¢.,.¢.,.,.:.]} Ill v'[~;:.,.rr-l-2A:~Oi, x vyq-A4~t',,x,] Re A {[~b ,.~b x.,.,. ' ' 

' l  
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. . . . . . . . . . . . . . . . . . . . . .  

Figure I. Sketch of the shallow cavity with three immiscible liquid layers. 
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and 

x'[Oil.y + A 20:~x] -- MA [~.0!~- ~0:~0~.]. [2] 

For a detailed derivation of these equations we refer to S&D. The governing equations have been 
scaled using the thermophysical properties of the middle layer, the middle-layer height d, the length 
of the cavity l, the applied temperature differences AT, the average temperature To and the 
interfacial tension gradient 7 of the lower interface. The following length, velocity, temperature and 
pressure scales are used: 

x * = l x ;  y * = d y  [3] 

and 

u ~ z 

\---p-- J \ l  ] " d2 [4] 

The non-dimensional parameters appearing in the above formulation are also based on the 
middle-layer thermophysical properties, the middle-layer height d, the cavity length l, the lower 
interfacial tension a0 and the interfacial tension gradient y as follows 

d v 
A = - "  P r = -  [5] 

l '  x 

and 

u*d 7ATd u*d 7ATd u*# v A T  
Re--- - A - - ;  M -  = A  - R e P r ;  C a -  - A - - ,  [6] 

v lAY t¢ K~u fro fro 

where A is the aspect ratio, Pr is the Prandtl number, Re is the Reynolds number, M is the 
Marangoni number and Ca is the Capillary number. Capitalized superscripts denote ratios of the 
thermophysical properties of the top (t) and bottom (b) layers with respect to the middle (m) layer, 
i.e. 

vB=__Vb, vT= Yr. [7] 
Vm ' •m 

Ratios of other thermophysical properties and layer height ratios are denoted similarly. For the 
middle layer, the ratios are simply unity. Interfacial tensions and their temperature gradients are 
scaled using the lower interface values, as follows: 

7u=~± ;  a° u=_,a0o. ~,L=I; a0L=I. [8] 
7 a0 

Also, interfacial deformations of the lower (1) and upper (u) interfaces are scaled using the 
middle-layer height d: 

hL(x ) hi(x) hU(x ) = h ° ( x )  
= - d -  ; T [9] 

At the four rigid walls the boundary condition is the no-slip condition. At the cold and hot end 
walls an isothermal condition applies, while at the insulated top and bottom boundaries a zero 
heat-flux condition applies. These conditions are: 

at x = T-I/2, 

at y = - d  B, 

and 

at y = 1 + d t, 

gli i O" 0 i = qL,- = , = ~ 1/2; hi(x) = 0, [10] 

q,b= ~¢ = 0; 0~=0  [ll] 

¢,' = q,~ = 0; 0~=0 .  [121 

For a detailed derivation of boundary conditions at the interfaces we again refer to S&D. Note 
that the interfaces are pinned at the side walls at fixed height. This assumption is based on 
experimental conditions of a forthcoming space-flight experiment, where the contact lines of the 
interfaces are pinned mechanically to the side walls by a knife-edge design. At the interfaces the 
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boundary conditions are continuity of  velocity and temperature, the kinematic condition, balance of 
normal and shear stress and heat flux balance, these take the form: 

a t y  - -h  L, 1 + h  v, 

¢~J= +J. q,x, ¢/=q,~J, [13] 

Lb ;J + h~@f. j = ~ +J + hJ~b +g = 0, [14] 

2A 2 
- ( P )  -~ (1 + A2hJ~ 2) (U [ ( [  ~ l')' [ h J'[ ¢ [[[' ' ) + A2hJ"(h!*¢xY + ~9,.~)]) 

hL 
= AC-(I -F AZh'l~2) 3/~ 07j° - A3CyJOi)' [15] 

(#[(1 - A 2h!~2)(@,y- A 2ffxx) - 4A2hJAbxy]) = -TJ( l  + A2hJ~2)'/2(OJ~ + hJ~O~,) [16] 

and 

(~[oy-  A 2hJ~Od) = o, [17] 

where the operator ( ) is defined as 

( f )  = f - J  --f+J [18] 

and the superscripts + j  and - j  refer to liquids above and below interfacej  (1 = lower, u = upper). 
Additionally, we have the conservation conditions: 

a t y  = h  L, 1 + h  U, 

-J = ~ +J = 0 [19] 
and 

f l/2 hi(x) dx = 0. [20] 
- I/2 

To proceed further with the asymptotic expansion, an estimate of  the order of  the non-dimensional 
parameters characterizing the flow (Re, M and Ca) is required. We continue with S&D's development 
and also assume the flow to be "slow", i.e. both Re and M are small: 

R e = R e A ;  M = M A ;  C a = C a A  4, [21] 

where 

Re ~ M ~ Ca ~ O(1); Pr ~ O(1). [22] 

The above limitation on Ca is discussed by S&D. This poses a rather severe limitation on the analysis, 
as the Pr of  several liquids of  interest in our experimental efforts is an order-of-magnitude or more 
larger than O(1). Nevertheless, we proceed despite this restriction and leave the consideration of  
larger Pr for a future study. 

The objective now is to solve the above system of equations in each of the three layers with 
applicable boundary conditions in the limit A -*0. 

Flow in the Core Region 

In the core region, away from the end walls, flow streamlines are presumed to be nearly parallel to 
the interfaces. Vertical velocities in this region are considered to be very small in comparison with the 
horizontal velocities, (v ~ Au) .  The stream function in layer i (t = top, m = middle, b = bottom) is 
expanded using the small geometric parameter  A as follows: 

qJ; = ~O; ' [23] o + A~I  + A 2 ~  + .. .. 

Temperature and vorticity in the three layers are expanded in a similar fashion. The two interface 
deformations at interfacej  (1 = lower, u = upper) are expanded using the small geometric parameter  
A as follows: 

h j = Ah~ + A2h j + . . . .  [24] 

The interface is considered to be flat at O(1). 
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Solution at O( l )  

Upon substitution of  the field variable expansions into the governing equations, we obtain the 
following simple form O(1): 

q/~,:,, = 0; 0~o,:, = 0; ?~, = #'~k~,,:. [25] 

The boundary conditions at the four walls are the same as [10]-[12]. At this order, the boundary 
conditions across the j th  interface become: 

a t y  = 0 , 1 ,  

~bo j = ~k~ -j = O; ~bo.' = 60+: / [261 

J J 
- ( p o ) =  a ° h ' - ,  ...... ( # f f o . . , ) = - T J 0 ~  ", ( 2 0 o , ) = 0 .  [27] 

Ca . . . .  

and 

and 

The solution of the above system of equations is 

q,'o = A'oy' + S'oy 2 + C'oy + Z)'o, [28] 

0.'~ = x [29] 

h ~ ( x ) =  Ca(l~-JA°J--#+JA~Ox3+H~x:+H~x+HJ~.- :  [30] 

As the O(i) core flow is presumed to be parallel, the coefficients A~, B~), C~ and D~ are all 
independent of  x, which dictates 0~ to be linear function of  x. These coefficients are determined 
by satisfying the boundary conditions on the stream function. This leads to a system of 12 linear 
equations with 12 unknown constants. The coefficients H'  i , H~ and H~ in [30] are yet to be 
determined by matching with the end-region solution. 

Solution at 0(.4) 

At O(A),  the governing equations reduce to: 

q'L, ,  = 0; 0~,, = 0; p',, = ~'g,~,, , .  

At the interfaces, the boundary conditions become: 
a t y = A h ~ ,  1 +Ah~,  

' +J + h~, q,;,! = 0 

and 

[31] 

[32] 

[331 

-- ( p [ ) = ~ ~ /~ ~ ~] ' " C ~  [ l ) ( ~  [ ~ ] , I , . . . . .  +h~ko,,.,]) = -TJ0 i , ;  ( 2 0 , )  =0 .  [34] 

The conservation of  return flow condition is 

¢ i -j + hi 6o,' = ~b ,+J + hi ~bo+/= 0. [35] 

This condition is the integrated form of the kinematic condition [32]. 
The solution of the above system of equations is: 

q~ = h~(x)[A~y 3 + B~y 2 + Cby + Db], [36] 

~b~ = h~(x)[A?my 3 q- o~rny 2 + Cbmy 4- D? m] --I- h U(x) [A ]my 3 "1- ottmy 2 + ctlmy --I-- Dim], [37] 

I~tl = h~(x)[A]y 3 + B]y 2 + CIy  + O]] [38] 

0] = 0 [39] 
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and 

O.to (I J v ' A b -  A h L ( x ) d x -  At~ m [40] 

0~ M / A °  4 B ° ' 3 -  ) 
= + 5 - y  .a ' , y  

and the boundary conditions at the interfaces are: 

a t =  AhL + A2h L, l + AhU + A2h~ ~, 

02 J = 0+'; (202,) = 0. 

The solution for the above equation is 

[43] 

and 

where the harmonic and biharmonic operators are defined as 
~2 

[44] 

Coefficients A6 and B6 are the previously evaluated constants from the flow at O(1), and the 
constants 61 and ~;. are to be determined from the boundary conditions. 

Flow in the End  Regions  

In the end-wall regions, not only must the wall boundary conditions be satisfied, the solution 
must also match the core flow away from the walls. To capture the flow pattern in the end regions. 
we stretch the coordinates in the vicinity of the cold and hot walls as follows: 

- ~ - ,  rI = Y Z -  -A , ~ = Y • [45] 

In the following development, without loss of generality, we concentrate on the cold-wall region. 
The governing equations in the stretched coordinate system become: 

Re i i i = m-  tk ¢(ff ,,~ + O ,,,,,, )1 [46] V41/J i A Y' [l~/,1 (I]/~,1,, -t- @ ~ ) - -  i i i 

M[ ' '  v 2 o ' =  A . 0 ~ 0 ; -  0~0,,], 

c74 2 ( 9 2  (~2~  (~4 V 2 (.)2 [48] 
V4 = ( ~ 4  "Jr- ~ ~ 2 ~ 2J  -~'- (~--~ 4 " = ~ "~- C . ~  ' 

The boundary conditions at the rigid walls remain unchanged and the boundary conditions at the 
interfaces become: 

at r / = A h  L, i + Ah  U, 

~i=qj,~-J; ~ J = ~ + i = 0 ;  0 / = 0  + ' = 0  j, [49] 

~ ¢ /  + h  j,I, " h~-,ll+i=O, [50] ~. -,-,~ = ¢ +' + ~..,-,, 

[471 

- o~ ( A - / j T A t l  ) h~(x)  d x + A ~  m 

At this order of the solution, the flow in the middle layer is influenced by the upper and lower 
interracial deformations. This leads to 4 additional constants, making a total of 16 constants to 
be evaluted by satisfying the boundary conditions on the stream function. Also, at this order, the 
interracial deformations at both interfaces are mutually coupled. The constants appearing in the 
interracial deformation equations are to be evaluated by matching with the end-region solution. 

Solut ion at O(A :) 

At this order we consider only the temperature field, as this is needed to obtain the matching 
end-wall solution. At this order, the governing equation for temperature is 

~' O' [42] Og K'  
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and 

2A h~:¢ 
- ( p )  + ~ ( p  [(h ~2 _ 1 )0~,, _ h{ (~,,~ - ¢¢¢ )1) - As ~ ( i  + h j2)3'2 [O'i} - -  A 3~,~, ,0i ] 

(,u [(1 - - h i 2 ) ( ¢ ~ -  0<) -4h~O~,~]) - 7j( l  + hiZ)"2 (0~ + h i0  ~,i) 
A 

[511 

[521 

I 
(1 + h}2) ''~ ('a°[O~ - h{O{l) = O. [531 

In addition to the above boundary conditions, there are the matching conditons that require the 
end-region solution to match the core-region solution: 

and 

lim ¢ ' ( ¢ , q ) =  lim ¢'(x,) '); lim ~k~(~, r / )=  lim q,,!,.(x,y) [54] 
~ z  v~-+ '2 ~ - , ~  v ~ - -  I,'2 

lira 0~(¢,r/)= lim Oi(x,y); l imhJ(~)=  lim hi(x). [55] 
~ - . 3 c  .~~-. 1,2 ~ - , ~  .x~-. 1'2 

As with the core solution, the governing field variables are expanded using the small geometric 
parameter A. 

Solution at 0(1) 

Substituting the expansion into the governing equations leads to the following equation for the 
temperature field at O(1): 

V20~ = 0. [56] 

The boundary conditions at the four walls are as defined previously. The boundary conditions 
along the interfaces and the matching conditions are as follows: 

at r / = 0 ,  1, 

and 

Off j = 0~-'= 0{~; (200.) = 0 [571 

lim 0;(~, r/) = - ' .  

For the stream function, the governing equation at O(1) is 

v4¢ ~ = 0 .  

This equation must be solved with the interracial boundary conditions: 
at t/ --0, 1, 

0 o ] -  +~" + i .  +i , -¢o~, ,1,o,,'=,1,o,, 0 i=¢  =o 
and 

[58] 

[59] 

[60] 

lim ¢~. (¢, q) = 0. [63] 

and 

lim q*~;({,rt)= lim ' , = ay3 , 2 ¢0(x,y)  A + B o y  + C D ' + D 0  [62] 
, ~ 7 .  x ' ~  12 

0[,~ =0;  h{¢¢ =0.  [61] 

Additionally, the solution must satisfy the boundary conditions at the rigid walls, and match the 
core solution, which requires that 
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The only possible solution satisfying the above equation for 00, the boundary conditions and the 
matching conditions is 

= - ' .  [64] 

The solution for the stream function must be obtained numerically. However, before proceeding 
to the numerical calculation, we require one additional interfacial boundary condition. This 
condition is obtained from the shear stress balance at the next higher order. 

We proceed next to the solution for hij (¢), the interfacial deformations. The governing equation 
is 

h~¢~ = 0. [65] 

The boundary condition and the matching condition are: 

h~(0)=0; lim h~(~)= lim h~(x ) .  [66] 
,~ ~ ~c .v ~--,- I/2 

After equating the first two terms in the matching condition expansion, we find that the only 
possible solution for the above equation is 

h~ (¢) = 0. [67] 

Since the governing equation for hi is the same at the hot and cold ends of the cavity, in a similar 
fashion to above we get: 

hi (Z) = 0. [68] 

These two results and the matching conditions provide two conditions on the core-region solution 
of h i (x), [30], namely, 

lim hi (x) = lim hi (x) = 0. [69] 
x ~ - ~ -  I/2 x ~  1/2 

The third condition is the conservation of volume, [20]. With these three conditions, we solve for 
the three unknown constants in [30]. For the solution, we obtain: 

hi (x) = Ca(# -JA o j - t~ +JA ~J) x ( x 2  _ ¼). [70] 
a~ 

Solution at 0 ( , 4 )  

Substituting the lower-order solutions for temperature into the governing equation leads at O ( A  ) 
to 

V20] =0 .  [71] 

As before, this equation must be solved with the previously defined boundary conditions at the 
walls and the following interfacial boundary conditions: 

at q = Ah~, I + Ah~ ,  

0 ? / =  0 ~-J = 0 i ; (20,,) = 0. [72] 

Additionally, the following matching condition must be satisfied: 

lim 0'i = ~. [73]  

The solution of [71] that satisfies the boundary and matching conditions is 

0~ = ¢. [74] 

In order to make the solution of ~k~ independent of Re, we introduce the following correlation: 

~'i = Re ¢'i'. [75] 

IJMF 20,2--M 
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With this notation, the governing equation for the streamfunction at this order becomes 

1 
V'~k'i'--~[~00~( j ~  ~b%, +~0~¢~)-~b~(~0,,.~ ~ +~9~,,,)]. [76] 

These equations are to be solved with the wall boundary conditions, and the following boundary 
conditions at the interfaces: 

and 

at q = A h  L, l + Ah U, 

~' , / '  = 0 ,,+J' ; O ?J' = 0 ?J' = 0 [771 

<#(0o~¢ - q'0,,)> = - T J 0 J ¢ .  h5¢~ = 0. [781 

Using the O(A) solution for 0~, the shear stress balance at this order becomes 

<~(~0¢~ - g'0,, )> = - 7J- [791 

As noted earlier, this shear stress balance is a required condition for the streamfunction solution 
at O(1). 

In addition to the above boundary conditions, the following matching condition must also be 
satisfied: 

lim OJ((~)= lim O ' i ' ( x ) = 0 .  [801 
~ - - ,  ~ ~ ~--*- 1,2 

Here we have used results from [36]-[38] and [70]. From these results we also get 

lim ~k'(~ (~) = O. [81] 

The biharmonic equation [76], with the above boundary conditions and matching conditions, is 
solved numerically. Similar to the O(1) stream function problem, before proceeding to the 
stream function solution at O(A), we require the shear stress balance condition at the next higher 
order. 

Next we proceed to the solution for the interfaciai deformations. The governing equation and 
the boundary condition are: 

h ~  = O; hi(O ) = O. [82] 

Substituting the known lower-order solutions into the matching condition [55] and equating terms 
of the same order leads to the following solution for the above equation and boundary condition: 

h~(¢)-  1Ca(p-'Ao-/-#+'Ag/)~. [83] 
2 oi, 

As before, we note that the governing equation and boundary condition at the hot and 
cold end walls are the same. Therefore, at the hot end-wall region, the matching condition leads 
to 

1 Ca(/~ JAo j - ~ +'A ~7 j) 
h i (Z) = 2 ~r ~ Z. [84] 

In addition, we have the conditions 

lim h~(x) = O. [85] 
.v ~-*_+ 1~2 

These two conditions, together with the conservation condition, 

f ,a h~(x)dx =0,  [86] 
I;;2 
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provide three conditions with which to obtain the unknown constants K j , K{ and K~ in [40] and 
[41]. Solving this system of  equat ions  leads to 

K j h{(x) = ~ ( x  2 - 41-) ( x  4 - x 2 -4- 1~2), [ 8 7 ]  

where 

and 

K" =-~I_[(A]r"- ktTA])(Ar~--#XAt°)#"~ + A~m(I~A]- " 

Solution at 0(,4 2) 
U p o n  subst i tut ion o f  the lower-order  solution, and introducing the correlat ion 

O~ = moi', 

the governing equat ion for  t empera ture  at this order  becomes 

1 i 
v~0~ , = ~ ¢%. 

The bounda ry  condi t ions at the walls are as before,  and at the interfaces we have: 
at q = Ah~ + AZh~, 1 + Ah~ + A~h~, 

o U  = o u  = o,i'; ( , ~ o ~ , )  = o. 

[88] 

[89] 

[90] 

[91] 

[92] 
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Figure 2(b). Caption opposite. 

The matching condition is 

~ - ,  x ~ q4+ q 3 + 3 ~ q + 6 ~  . [93] 

For  computational convenience, rather than imposing this matching condition, we impose the 
following equivalent condition instead: 

lim 0~ = 0. [94] 

The harmonic problem with the above prescribed boundary conditions is solved numerically. 
As noted earlier, we require the shear stress balance condition at this order to solve the O(A) 

stream function problem. This condition is 

</~(ff ;¢~ - f f  ;,,, )> = - P r  ? ' 0 ~ ' .  [ 9 5 ]  

Numerical Modeling 
The finite-difference method is used to solve the harmonic and the biharmonic problems. The 

harmonic problem is discretized using a 5-point operator providing 0(62) accuracy, while the 
biharmonic problem is discretized using a 13-point operator. The mesh is stretched along the 
horizontal (x)-direction using an exponential function, and it is stretched along the vertical 
(z)-direction using a cosine function in each layer. IMSL routines are used to solve the resulting 
linear system of equations. 

The end region is horizontally extended towards the core a distance 5 times the middle-layer 
height. Therefore, the computational domain in non-dimensional space is 5.0 (horizontal) by 
1 + d B + d v (vertical). The mesh resolution in each layer is 51 × 51. Further refinement of the mesh 
was found to have an insignificant influence on the results. 
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Figure 2. Symmetric encapsulation--equal layer heights, A = 0.05, Re = 5: (a) cold end-region flow 
correct up to O(A:); (b) temperature field in the cold end region correct up to O(A3), (c) interfacial 

deformations correct up to O(A 3 ). 

RESULTS 

Thermocapillary convection in three immiscible layers in a shallow cavity is characterized by 15 
parameters. These are the 8 ratios of  the thermophysical properties, and the height ratios of the 
upper and lower layers with respect to the middle layer, the aspect ratio, the Re and Pr of the middle 
layer, the interfacial tension, and interfacial tension gradient ratios of  the upper interface with 
respect to the lower interface and the lower interface Ca. 

For the purpose of  this investigation, we select two systems. These are composed of  fluorinert 
FC-75 liquid, encapsulated above and below by two different silicone oils (SO; 1 and 5 cSt). The 
thermophysical properties of these liquids are listed in table 1. We select two combinations: (i) SO 
1 cSt/FC-75/SO 1 cSt; and (ii) SO I cSt/FC-75/SO 5cSt. The ratios of the thermophysical 
properties for these systems are listed in table 2. As the interfacial tension and interfacial tension 
gradient data for these systems are unavailable in the literature, a method proposed by Girifalco 
& Good (1957) is used to estimate the interfacial tension based on the surface tension of  the 
adjacent liquids. For both cases considered, the interfacial tension gradient is negative. 

Case (i) represents the encapsulation of the middle layer (FC-75) liquid with "equal" viscosity 
l iquid--the symmetric encapsulation case; and case (ii) represents encapsulation by different 
viscosity liquids, one encapsulant layer being 5 times more viscous than the other--the non-sym- 
metric encapsulation case. Neither of these systems can be realized in terrestrial gravity, although 
they are of  interest for studying pure thermocapillary flow under zero-gravity conditions. 
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First we consider the symmetric encapsulation case when all three layers are of "equal" viscosity 
and equal height, case (i). The flow streamlines for this case, correct to O (A 2), are shown in figure 
2(a). Symmetric interfacial tension gradients produce counter-rotating rolls in the middle layer. At 
both interfaces, liquid is pulled towards the cold wall. The flow in the upper and lower encapsulant 
layers is mirror-symmetric. The temperature field, correct to O(A3), is shown in figure 2(b). For 
the aspect ratio and Re chosen, the temperature field depicts a nearly conductive state in all three 
layers. The interfacial deformations, correct to O(A 3), are shown in figure 2(c). The deformations 
are perfectly symmetric about the center of the cavity. Similar to S&D's single layer, the middle 
layer bulges near the cold wall and contracts near the hot wall. 

The middle-layer flow in the above case is weaker than flow in an unencapsulated free-free layer, 
as evidenced by comparing the non-dimensional maximum leading-order stream function values 
in the core region. The maximum leading-order stream function value for an unencapsulated 
free-free layer obtained from S&D is 1.6 × 10 2. The maximum value for the above encapsulated 
case is 1.3 × 10-2. The influence of  encapsulation on reducing the middle-layer flow is more 
significant with higher viscosity encapsulants. 

Next we consider the symmetric encapsulation case (i) when encapsulant layers are one-quarter 
the thickness of the middle layer. For this case, the flow streamlines, correct to O(A 2), are shown 
in figure 3(a). The flow pattern and temperature distributions are qualitatively unchanged. The flow 
in all three layers is slower than when all layers are of equal height. Reducing the encapsulant layer 
heights further will lead to even slower flow in all three layers. This is attributed to increased viscous 
resistance to flow in the encapsulant layers as the layer thickness is reduced. The limiting case of 
zero encapsulant layer thicknesses will lead to near suppression of the middle-layer flow as a rigid 
boundary condition is approached. It is worth noting, however, that the asymptotic analysis 
becomes invalid as the height ratios approach O (A). In this limit the aspect ratio of the encapsulant 
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Figure 3. Symmetric encapsulation--unequal layer heights, A = 0.05, Re = 5: (a) cold end-region flow 

correct up to O ( A  2 ); (b) interfacial deformations correct up to O ( A  3 ). 

layers approaches O (A 2), and the velocity scale in the encapsulants becomes an order of  magnitude 
less than in the middle layer. 

The interfacial deformations for the above symmetric case (i) with unequal layer heights are 
shown in figure 3(b). Here we notice a dramatic difference compared to the case of equal layer 
heights. The middle layer contracts near the cold end wall and bulges near the hot wall. This is 
in contrast to the equal layer heights case, where the middle layer bulges near the cold wall and 
contracts near the hot wall. The deformation of  the interface is due to the local dynamic pressure 
difference across the interface. When encapsulant layers are thinner than the middle layer, the local 
dynamic pressure near the cold wall in the encapsulant layers becomes larger than in the middle 
layer, forcing the interface to bend into the middle layer. The opposite occurs near the hot wall. 
This, however, is valid only as long as the ratio of the encapsulant layer height to the middle layer 
height is of O(1) and does not approach O(A). 

For the non-symmetric encapsulation case with equal height layers, the flow streamlines, correct 
up to O(A2), are shown in figure 4(a). In the middle layer, the flow is no longer symmetric. It is 
still composed of  two counterrotating roll cells. The vertical extent of the upper roll cell is 
significantly smaller than the lower roll. The flow in the upper, more viscous encapsulant, is 
significantly weaker than in the lower encapsulant. This is despite the fact that the interfacial 
tension gradients at both interfaces are the same. The interfacial deformations at the two interfaces 
correct to O(A 3) are shown in figure 4(b). The deformation at the upper interface, which has the 
larger interfacial tension, is significantly smaller than at the lower interface. Consistent with the 
symmetric encapsulation case, the middle layer bulges near the cold wall and contracts near the hot 
wall. Therefore, near the cold wall, the local dynamic pressure is higher in the middle layer than 
in the more viscous upper encapsulant and in the lower encapsulant. The temperature field is very 
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similar to that for the symmetric encapsulation case and also represents a more or less conductive 
state. 

We also considered the non-symmetric encapsulation case, where encapsulant layers are one-quar- 
ter as thick as the middle layer. As with the symmetric encapsulation case, the middle layer in this 
case contracts near the cold end wall and bulges near the hot wall. This also is in contrast to the 
non-symmetric encapsulation case with equal layer heights. 

C O N C L U S I O N  

Thermocapillary flow in multiple immiscible liquid layers confined in a differentially heated 
shallow cavity with rigid and insulated upper and lower boundaries is investigated. Sen & Davis 
(1982) applied the method of matched asymptotic expansions to determine thermocapillary flow 
in a single liquid layer in a differentially heated shallow cavity. This method is extended to 
investigate thermocapillary flow in a three-layer immiscible liquid system featuring two deformable 
interfaces. 

With symmetric encapsulation and equal layer heights, the flow in the middle layer is qualitatively 
the same, but weaker than in S&D's single layer. However, when the encapsulant thickness is much 
less than that of the middle layer, interfacial deformations, and thereby flow in the encapsulated 
layer, are no longer the same as in the unencapsulated layer. Rather than bulging near the cold 
wall, the middle layer contracts near the cold wall and bulges near the hot wall. The influence of 
mechanical coupling between the layers is also quite apparent with non-symmetric encapsulation, 
which leads to unequal size rolls. 

Although, the parameters used in this study are not directly applicable to crystal growth 
applications, the results of this analysis indicate that: (1) liquid encapsulation has the potential for 
reducing thermocapillary convective flow in the middle (melt) layer; and (2) the flow pattern in the 
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Figure 4. Non-symmetric encapsulation---equal layer heights, A = 0.05, Re = 5: (a) cold end-region flow 

correct up to O(A 2); (b) interfacial deformations correct up to O(A 3). 

encapsulated layer depends on the encapsulation thickness and the thermophysical properties of 
the encapsulants. 
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